Slovak Economic Association Meeting, Kosice

# Forecasting the term structure of interest rates in Slovakia

1

Pavol Povala and Roman Vasil

30 September 2017

#### **Motivation**

Motivation
Paper summary
Literature
Key objects
Framework
Forecasting setup
Results
Conclusions
Appendix

- \* **Q**: Can we predict yields on Slovak government bonds better than a naive benchmark out-of-sample?
- ★ Why is this an important question?
  - 1. Assess the role of active government debt management
  - 2. Slovak bonds are different from other major government bond markets (U.S., U.K.) due to credit and liquidity premiums, and lack of domestic monetary policy tools
- Focus on a small number of forecasting models and longer horizons (e.g. one to three years)

### This paper

Motivation Paper summary Literature Key objects Framework Forecasting setup Results

Conclusions

Appendix

- $\star$  We split the forecasting exercise into two parts:
  - 1. Forecasting of German government bond yields
  - 2. Forecasting of the spread of Slovak to German government bonds
- \* The sum-of-the-parts forecasting model delivers better forecasting performance than the random walk, especially at long horizons
- \* Source of improvement is the negative correlation between spread forecast errors and forecast errors on German government bonds

#### **Related literature**

Motivation Paper summary Literature Key objects Framework Forecasting setup Results Conclusions

Appendix

**Expectations hypothesis.** Fama & Bliss (1987), Campbell & Shiller (1991), [regressions on yield curve slope]; Cieslak & Povala (2015) [yield curve decomposition into short rate expectations and term premium];

**Statistical models** Diebold & Li (2006) [dynamic Nelson-Siegel]; Ang & Piazzesi (2003) [add macro factors to a reduced-form no-arbitrage term structure model]; de Pooter & Ravazzolo & van Dick (2010) [adding macro factors improves forecasting performance in recessions];

**Forecasting credit spreads.** Amstad & Remolona & Shek (2016), Cornelli (2012) [relative importance of country fundamentals vs. global financial variables, e.g. VIX]; Ejsing & Grothe & Grothe (2015) [credit and liquidity spreads during the eurozone sovereign debt crisis].



- Sample period January 2003–December 2016
- Estimated zero-coupon yields on Slovak government bonds available on the National Bank of Slovakia website
- Number of regime changes (i)euro adoption, (ii) two financial crises, and (iii) non-conventional monetary policy  $\longrightarrow$  complicates forecasting



- Credit spread is an important driver of yields  $\longrightarrow$  in the post-2011 period the main source of variation in yields
- Eurozone crisis in 2011-2012 more severe than the Great Recesssion in 2008

Currently low spreads not unique

\*Credit spread before 2009 is obtained from international EUR-denominated bonds.

#### Framework

Motivation Paper summary Literature Key objects > Framework Forecasting setup Results Conclusions Appendix

- Term structure of interest rates: market expectations about future policy rates + risk premiums
- \* Key components of the Slovak yield curve:
  - 1. Expectations about the ECB policy rate
  - 2. Term premium
  - 3. Sovereign credit risk premium
  - 4. Liquidity risk premium
- Need a forecasting model that takes the economic decomposition of the yield curve into account

#### Models

Motivation Paper summary Literature Key objects Framework Forecasting setup Results Conclusions Appendix \* Decompose the term structure of German yields into inflation  $\pi_t$ , real rate  $r_t$  and term premium  $tp_t^{(n)}$ :

$$y_t^{(n)} = \underbrace{\frac{1}{n} \sum_{i=0}^{n-1} E_t r_{t+i}}_{i=0} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} E_t \pi_{t+1}}_{\text{term premium}} + \underbrace{\frac{t p_t^{(n)}}_{t\text{term premium}}}_{\text{term premium}}$$

expectation hypothesis term

 Approximate inflation expectations with a discounted moving average of past inflation:

$$\tau_t^{CPI} = (1 - \nu) \sum_{i=0}^{t-1} \nu^i \pi_{t-i}$$

- \* Use one-period yield to extract the real rate (no term premium)
- Term premium is a residual from regressing long-term yield on inflation expectations and the real rate

## Models (cont'd)

Motivation Paper summary Literature Key objects > Framework Forecasting setup Results Conclusions Appendix

- ★ Forecasting the three components:
  - 1. Inflation expectations  $\tau_t^{CPI}$ : assume random walk
  - 2. Real rate: assume AR(1) process
  - 3. Term premium: assume AR(1) process
- □ Compare the forecast to the dynamic Nelson-Siegel model widely used in the literature

□ Consider three models for forecasting spreads:

- 1. Random walk
- 2. AR(1) model
- 3. "Extended" model: lagged spread, slope of German curve, VIX

Motivation Paper summary Literature Key objects Framework Forecasting setup Results Conclusions Appendix

- \* Forecasting horizons: one, six, 12, 24, and 36 months
- \* Benchmark forecast: random walk  $\hat{y}_{t+h|t,rw}^{(\tau)} = y_t^{(\tau)}$
- ★ Metric: ratio of Root Mean Squared Forecast Errors (RMSFE) to random walk RMSFE
- \* Use Diebold-Mariano test to evaluate the significance
- \* Out-of-sample period: January 2009 through December 2016

| DNS German yields |         |         |          |          |          |  |
|-------------------|---------|---------|----------|----------|----------|--|
|                   | 1-month | 6-month | 12-month | 24-month | 36-month |  |
| 1Y                | 1.27*   | 1.41    | 1.79     | 2.59     | 3.19     |  |
| 2Y                | 1.05    | 1.23    | 1.61     | 2.23     | 2.47     |  |
| 3Y                | 1.02    | 1.25    | 1.57*    | 2.03     | 2.13*    |  |
| 4Y                | 1.11*   | 1.30*   | 1.57*    | 1.90     | 1.94*    |  |
| 5Y                | 1.22*   | 1.32*   | 1.54*    | 1.79*    | 1.80*    |  |
| 6Y                | 1.23**  | 1.31*   | 1.49*    | 1.69*    | 1.69*    |  |
| 7Y                | 1.16*   | 1.26*   | 1.43*    | 1.59*    | 1.60*    |  |
| 8Y                | 1.06*   | 1.20*   | 1.35*    | 1.49*    | 1.51*    |  |
| 9Y                | 1.00    | 1.13*   | 1.26*    | 1.40*    | 1.43*    |  |
| 10Y               | 1.01    | 1.06    | 1.18     | 1.32     | 1.36*    |  |

\* indicates that the difference is statistically significant as indicated by Diebold-Mariano test.

- ★ DNS model significantly under-performs the naive benchmark
- \* Deterioration in performance mainly due to zero lower bound

| Restr. cycles (German bonds) |         |         |          |          |          |
|------------------------------|---------|---------|----------|----------|----------|
|                              | 1-month | 6-month | 12-month | 24-month | 36-month |
| 1Y                           | 0.99    | 0.99    | 1.11     | 1.98*    | 2.37*    |
| 2Y                           | 0.99    | 1.02    | 1.14     | 1.66*    | 1.73*    |
| 3Y                           | 1.00    | 1.03    | 1.11     | 1.41     | 1.37     |
| 4Y                           | 1.00    | 1.03    | 1.07     | 1.22     | 1.15     |
| 5Y                           | 1.00    | 1.02    | 1.04     | 1.09     | 1.01     |
| 6Y                           | 1.00    | 1.01    | 1.00     | 1.00     | 0.91     |
| 7Y                           | 1.00    | 1.00    | 0.98     | 0.93     | 0.83*    |
| 8Y                           | 1.00    | 0.99    | 0.95     | 0.87     | 0.78*    |
| 9Y                           | 1.00    | 0.99    | 0.94     | 0.83*    | 0.73*    |
| 10Y                          | 1.00    | 0.98    | 0.92     | 0.79*    | 0.70*    |

★ Modeling components of the yield curve improves forecasting performance

\* Best model restricts term premium component to be zero, i.e. forecast real rate

|     | Restr. cycles (German bonds) + RW (spreads) |         |          |          |          |  |
|-----|---------------------------------------------|---------|----------|----------|----------|--|
|     | 1-month                                     | 6-month | 12-month | 24-month | 36-month |  |
| 1Y  | 0.66                                        | 0.70    | 0.86     | 1.18*    | 1.58*    |  |
| 2Y  | 0.69                                        | 0.74    | 0.89     | 1.13*    | 1.25*    |  |
| 3Y  | 0.70                                        | 0.75    | 0.87     | 1.02*    | 1.07*    |  |
| 4Y  | 0.71                                        | 0.74    | 0.84     | 0.92*    | 0.95     |  |
| 5Y  | 0.71                                        | 0.74    | 0.81     | 0.84     | 0.87     |  |
| 6Y  | 0.72                                        | 0.74    | 0.79     | 0.79     | 0.81     |  |
| 7Y  | 0.73                                        | 0.74    | 0.77     | 0.74     | 0.77*    |  |
| 8Y  | 0.73                                        | 0.74    | 0.76     | 0.71     | 0.73*    |  |
| 9Y  | 0.74                                        | 0.74    | 0.76     | 0.69     | 0.71*    |  |
| 10Y | 0.75                                        | 0.75    | 0.75     | 0.67     | 0.69*    |  |

- $\star$  Any of forecasting model of spreads produces significantly lower forecasting errors than a naive forecast
- ★ Interaction of credit spread and German government bond yield forecast errors improves the forecasting performance

#### Conclusions

Motivation

Paper summary

Literature

Key objects

Framework

Forecasting setup

Results

Conclusions

Appendix

- \* Yields on Slovak government bonds are predictable out-of-sample
- The key to this result is an economically-motivated decomposition of yields
- \* Source of predictability is the negative correlation of forecast errors

Motivation

Paper summary

Literature

Key objects

Framework

Forecasting setup

Results

Conclusions

> Appendix

Data

# Appendix

Data, Robustness

#### Data

| Motivation        |
|-------------------|
| Paper summary     |
| Literature        |
| Key objects       |
| Framework         |
| Forecasting setup |
| Results           |
| Conclusions       |

Appendix

Data

- □ Zero-coupon yield curve extracted from Slovak government bonds, monthly frequency, 2003-2016, from the National Bank of Slovakia
- □ German zero-coupon yield curve, monthly frequency, 1991-2016, from the Bundesbank